Learning from Click Model and Latent Factor Model for Relevance Prediction Challenge
نویسندگان
چکیده
How to accurately interpret user click behaviour in search log is a key but challenging problem for search relevance. In this paper, we describe our solution to the relevance prediction challenge which achieves the first place among eligible teams. There are three stages in our solution: feature generation, feature augmentation and learning a ranking function. In the first stage, we extract features in relation to querydocument pairs as well as individual queries and documents from the click log data. In the second stage, we induce additional features by click model techniques and learning latent factor models to correct different biases and discover the correlations between different queries or documents respectively. In the final stage, we apply supervised learning models on the limited labelled data to induce a model for predicting relevance based on the features generated in the previous two stages.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملIncorporating Semantic Knowledge into Latent Matching Model in Search
The relevance between a query and a document in search can be represented as matching degree between the two objects. Latent space models have been proven to be effective for the task, which are often trained with click-through data. One technical challenge with the approach is that it is hard to train a model for tail queries and tail documents for which there are not enough clicks. In this pa...
متن کاملExploring Query Auto-Completion and Click Logs for Contextual-Aware Web Search and Query Suggestion
Contextual data plays an important role in modeling search engine users’ behaviors on both query auto-completion (QAC) log and normal query (click) log. User’s recent search history on each log has been widely studied individually as the context to benefit the modeling of users’ behaviors on that log. However, there is no existing work that explores or incorporates both logs together for contex...
متن کاملTUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012